The Role of Nanopartikel Green Tea in Enhancing Endothelial Cell Migration in HUVEC Culture exposed to EPC-Conditioned Media in Hyperglycemic Conditions

Authors

DOI:

https://doi.org/10.30994/jnp.v8i1.626

Keywords:

endothelial progenitor cells (EPCs), HUVEC migration, and EPC-conditioned media, nanopartikel green tea

Abstract

Backgrounds: The role of endothelial progenitor cells (EPCs) in angiogenesis is impaired in diabetes mellitus. The present study was conducted to observe the effects of nanopartikel green tea on the ability of EPCs exposed to high levels of glucose to release NO and induce endothelial cell migration.

Purpose: This study aims to describe the mechanism of the role of green tea nanoparticles in increasing migration of endothelial cells in HUVEC cultures exposed to EPC-CM. The function of EPCs was assessed by evaluating HUVEC migration after administration of EPC-Conditioned Media. HUVEC migration was assessed by the Boyden chamber assay method. Method: Green Tea Nano Particles treatment at doses of 30 nM and 50 nM significantly increased endothelial cell migration at high glucose exposure of 22 mM. At a dose of 50 nM, normal glucose exposure increased endothelial cell migration better than high glucose exposure. Administration of high levels of glucose resulted in a decrease in the ability of EPCs to induce HUVEC migration, decrease in NO of EPCs, and decrease in the factor affecting EPC migration, namely SDF-1α and CXCR4.

Results: Administration of 50 μM of nanopartikel green tea could inhibit the decreased ability of EPCs to induce HUVEC migration, and this effect was associated with NO, SDF-1α and CXCR4 concentrations.

Conclusions: Administration of nanopartikel green tea could maintain the ability of EPCs exposed to high levels of glucose to release NO and induce HUVEC migration through an increase in SDF-1α and CXCR4.

Downloads

Download data is not yet available.

References

Arizmendi-Grijalva, A., Martínez-Higuera, A. A., Soto-Guzmán, J. A., Martínez-Soto, J. M., Rodríguez-León, E., Rodríguez-Beas, C., López-Soto, L. F., Alvarez-Cirerol, F. J., Garcia-Flores, N., Cortés-Reynosa, P., Pérez-Salazar, E., & Iñiguez-Palomares, R. (2021). Effect on Human Vascular Endothelial Cells of Au Nanoparticles Synthesized fromVitex mollis. ACS Omega, 6(38), 24338–24350. https://doi.org/10.1021/acsomega.1c01506.

Bulboaca, A. E., Boarescu, P. M., Porfire, A. S., Dogaru, G., Barbalata, C., Valeanu, M., Munteanu, C., Râjnoveanu, R. M., Nicula, C. A., & Stanescu, I. C. (2020). The effect of nano-epigallocatechin-gallate on oxidative stress and matrix metalloproteinases in experimental diabetes mellitus. Antioxidants, 9(2), 1–15. https://doi.org/10.3390/antiox9020172.

Cells, E. P., Szmitko, P. E., Fedak, P. W. M., Weisel, R. D., Stewart, D. J., Kutryk, M. J. B., & Verma, S. (2003). Brief Review : From Bench to Bedside. 3093–3100. https://doi.org/10.1161/01.CIR.0000074242.66719.4A.

Chen, Y., Lin, S., Lin, F., Wu, T., & Tsao, C. (2007). High Glucose Impairs Early and Late Endothelial Progenitor Cells by Modifying Nitric Oxide – Related but Not Oxidative Stress – Mediated Mechanisms. Diabetes, 56(June), 1559–1568.

Csonka, C., Páli, T., Bencsik, P., Görbe, A., Ferdinandy, P., & Csont, T. (2015). Measurement of NO in biological samples. British Journal of Pharmacology, 172(6), 1620–1632. https://doi.org/10.1111/bph.12832.

Falasca, M., Raimondi, C., & Maffucci, T. (2011). Boyden Chamber. Methods in Molecular Biology, 769(January 2015), 86–95. https://doi.org/10.1007/978-1-61779-207-6.

Fu, Q. Y., Li, Q. S., Lin, X. M., Qiao, R. Y., Yang, R., Li, X. M., Dong, Z. B., Xiang, L. P., Zheng, X. Q., Lu, J. L., Yuan, C. B., Ye, J. H., & Liang, Y. R. (2017). Antidiabetic effects of tea. Molecules, 22(5), 1–19. https://doi.org/10.3390/molecules22050849.

Goshi, E., Zhou, G., & He, Q. (2019). Nitric oxide detection methods in vitro and in vivo. Medical Gas Research, 9(4), 192–207. https://doi.org/10.4103/2045-9912.273957.

Griendling, K. K. (2007). Endothelial Cell Migration During Angiogenesis. 782–794. https://doi.org/10.1161/01.RES.0000259593.07661.1e.

Hafshah, & Simanjuntak, K. (2020). Efektivitas Ekstrak Teh Hijau (Camellia sinensis L.) terhadap Penurunan Kadar Glukosa Darah Puasa Tikus Wistar (Rattus norvegicus) yang diInduksi Aloksan. Jurnal Sehat Mandiri, 15(1), 86–97. https://doi.org/10.33761/jsm.v15i1.194.

Hald, C., Kulkarni, J. A., Witzigmann, D., Lind, M., Petersson, K., & Simonsen, J. B. (2022). The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced Drug Delivery Reviews, 188(1–18).

Hu, L., Dai, S.-C., Luan, X., Chen, J., & Cannavicci, A. (2018). Dysfunction and Therapeutic Potential of Endothelial Progenitor Cells in Diabetes Mellitus. Journal of Clinical Medicine Research, 10(10), 752–757. https://doi.org/10.14740/jocmr3581w.

Islam, M. A. (2012). Cardiovascular effects of green tea catechins: Progress and promise. Recent Patents on Cardiovascular Drug Discovery, 7(2), 88–99. https://doi.org/10.2174/157489012801227292.

Kondo, T., Ohta, T., Igura, K., Hara, Y., & Kaji, K. (2002). Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Letters, 180(2), 139–144. https://doi.org/10.1016/S0304-3835(02)00007-1.

Leone, A. M., Valgimigli, M., Giannico, M. B., Zaccone, V., Perfetti, M., Amario, D. D., Rebuzzi, A. G., & Crea, F. (2009). From bone marrow to the arterial wall : the ongoing tale of endothelial progenitor cells. 890–899. https://doi.org/10.1093/eurheartj/ehp078.

Meng, J. M., Cao, S. Y., Wei, X. L., Gan, R. Y., Wang, Y. F., Cai, S. X., Xu, X. Y., Zhang, P. Z., & Li, H. Bin. (2019). Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review. Antioxidants, 8(6), 1–25. https://doi.org/10.3390/antiox8060170.

Peristiowati, Y., Indasah, I., & Ratnawati, R. (2015). The effects of catechin isolated from green tea GMB-4 on NADPH and nitric oxide levels in endothelial cells exposed to high glucose. Journal of Intercultural Ethnopharmacology, 4(2), 114. https://doi.org/10.5455/jice.20141224104135.

Peristiowati, Y., & Kusnul, Z. (2020). Synthesis and characterization of green tea paste nanoparticles based on wet milling. Journal of Advanced Pharmaceutical Technology and Research, 11(2), 86–88. https://doi.org/10.4103/japtr.JAPTR_148_19.

Qin, H., Zhao, X., Hu, Y. J., Wang, S., Ma, Y., He, S., Shen, K., Wan, H., Cui, Z., & Yu, B. (2021). Inhibition of SDF-1/CXCR4 Axis to Alleviate Abnormal Bone Formation and Angiogenesis Could Improve the Subchondral Bone Microenvironment in Osteoarthritis. BioMed Research International, 2021, 1–13. https://doi.org/10.1155/2021/8852574.

Shabri, S., Rohdiana, D. D., Maulana, H., Haryanto, S., Prawira-Atmaja, M. I., Mauludin, R., Insanu, M., & Perdana, A. W. (2019). Karakteristik nanopartikel ekstrak teh hijau dengan metode nano milling dan nano spray. Jurnal Sains Teh Dan Kina, 21(2), 74–84. https://doi.org/10.22302/pptk.jur.jptk.v21i2.146.

Sulistyo, H., Kurniawan, D. W., & Rujito, L. (2017). Biochemical and histopathological effects of green tea nanoparticles in ironized mouse model. Research in Pharmaceutical Sciences, 12(2), 99–106. https://doi.org/10.4103/1735-5362.202448.

Sun, J., Zhang, X., Broderick, M., Fein, H., Instruments, W. P., & International, S. (2003). Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors, 3, 276–284. http://www.mdpi.net/sensors.

Taleb Safa, M. A., & Koohestani, H. (2024). Green synthesis of silver nanoparticles with green tea extract from silver recycling of radiographic films. Results in Engineering, 21(January), 101808. https://doi.org/10.1016/j.rineng.2024.101808.

Tóvári, J., Futosi, K., Bartal, A., Tátrai, E., Gacs, A., Kenessey, I., & Paku, S. (2014). Boyden chamber-based method for characterizing the distribution of adhesions and cytoskeletal structure in HT1080 fibrosarcoma cells. Cell Adhesion and Migration, 8(5), 509–516. https://doi.org/10.4161/cam.28734.

Widowati, W., Widyanto, R. M., Husin, W., Ratnawati, H., Laksmitawati, D. R., Setiawan, B., Nugrahenny, D., & Bachtiar, I. (2014). Green tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity. Iranian Journal of Basic Medical Sciences, 17(9), 702–709.

Wright, D. E., Bowman, E. P., Wagers, A. J., Butcher, E. C., & Weissman, I. L. (2002). Hematopoietic Stem Cells Are Uniquely Selective in Their Migratory Response to Chemokines. 195(9). https://doi.org/10.1084/jem.20011284.

Zhang, M., Lv, X., Li, J., Xu, Z., & Chen, L. (2008). The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. 2008. https://doi.org/10.1155/2008/704045.

Downloads

Published

2024-10-29

How to Cite

Yuly Peristiowati, Hariyono, Zauhani Kusnul, Reni Yuli Astutik, & Nian Afrian Nuari. (2024). The Role of Nanopartikel Green Tea in Enhancing Endothelial Cell Migration in HUVEC Culture exposed to EPC-Conditioned Media in Hyperglycemic Conditions. Journal Of Nursing Practice, 8(1), 23–32. https://doi.org/10.30994/jnp.v8i1.626

Issue

Section

Articles